灾难事件后立即可用的高分辨率卫星图像对于响应计划至关重要,因为它促进了对临界基础设施状态的广泛情境意识,例如建立损坏,洪水和障碍物来访问路线。此规模的损坏映射将需要数百人的专家小时。然而,众包的组合和深度学习的最新进步将实时降低几个小时需要的努力。要求志愿者放置点标记,而不是实际受损区域的形状,显着降低灾难期间响应所需的分析时间。但是,不同的志愿者可能在标记中不一致。这项工作提出了用于汇总可能不一致的损伤标记以培训神经网络损伤探测器的方法。
translated by 谷歌翻译
天文学家通常已经着手通过从头开始创建自己的表示来解决监督的机器学习问题。我们表明,经过训练的深度学习模型,可以回答每个星系动物园贴花问题问题,即学习星系的有意义的语义表示,这些语义表示对于从未训练过的新任务很有用。我们利用这些表示形式优于最近对研究大型星系样本至关重要的实际任务的方法。第一个任务是识别与查询星系相似的形态的星系。给定一个星系为人类分配了一个免费文本标签(例如“ #diffuse”),我们可以找到与大多数标签匹配该标签的星系。第二个任务是确定特定研究人员最有趣的异常。我们的方法在识别最有趣的100个异常(由Galaxy Zoo 2志愿者判断)方面是100%准确的。第三个任务是调整模型来仅使用少数新标记的星系解决新任务。与从陆地图像(ImageNet)或从头开始训练的模型相比,从我们的表示形式进行微调的模型可以更好地识别环形星系。我们用很少的新标签解决每个任务;一个(用于相似性搜索)或数百个(用于异常检测或微调)。这挑战了长期以来的观点,即深度监督方法需要新的大型标签数据集,以便在天文学中实际使用。为了帮助社区受益于我们验证的模型,我们发布了我们的微调代码Zoobot。没有先前经验的研究人员可以访问Zoobot。
translated by 谷歌翻译
我们介绍了Galaxy动物园贴花:SDSS DR8占地面积的星系中的黑色能量相机传统调查图像的详细视觉形态学分类。更深的贴花图像(R = 23.6与SDSS的r = 22.2)显示螺旋臂,弱杆和在SDSS成像中未见的潮汐功能。为了最佳利用较大的贴花图像,志愿者从一套新的答案中选择,旨在提高对合并和酒吧的敏感性。 Galaxy动物园志愿者提供750万个单独的分类超过314,000个星系。 140,000个星系收到至少30分类,足以准确测量像条状的详细的形态,其余的收到约5.所有分类都用于培训贝叶斯卷积神经网络的集合(一种最先进的深度学习方法)预测所有314,000个星系的详细形态的后海外。当衡量自信的志愿者分类时,每个问题的网络大约有99%。形态学是每个星系的基本特征;我们的人机和机器分类是理解星系如何发展的准确和详细资源。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
The latent space of autoencoders has been improved for clustering image data by jointly learning a t-distributed embedding with a clustering algorithm inspired by the neighborhood embedding concept proposed for data visualization. However, multivariate tabular data pose different challenges in representation learning than image data, where traditional machine learning is often superior to deep tabular data learning. In this paper, we address the challenges of learning tabular data in contrast to image data and present a novel Gaussian Cluster Embedding in Autoencoder Latent Space (G-CEALS) algorithm by replacing t-distributions with multivariate Gaussian clusters. Unlike current methods, the proposed approach independently defines the Gaussian embedding and the target cluster distribution to accommodate any clustering algorithm in representation learning. A trained G-CEALS model extracts a quality embedding for unseen test data. Based on the embedding clustering accuracy, the average rank of the proposed G-CEALS method is 1.4 (0.7), which is superior to all eight baseline clustering and cluster embedding methods on seven tabular data sets. This paper shows one of the first algorithms to jointly learn embedding and clustering to improve multivariate tabular data representation in downstream clustering.
translated by 谷歌翻译
An unbiased scene graph generation (SGG) algorithm referred to as Skew Class-balanced Re-weighting (SCR) is proposed for considering the unbiased predicate prediction caused by the long-tailed distribution. The prior works focus mainly on alleviating the deteriorating performances of the minority predicate predictions, showing drastic dropping recall scores, i.e., losing the majority predicate performances. It has not yet correctly analyzed the trade-off between majority and minority predicate performances in the limited SGG datasets. In this paper, to alleviate the issue, the Skew Class-balanced Re-weighting (SCR) loss function is considered for the unbiased SGG models. Leveraged by the skewness of biased predicate predictions, the SCR estimates the target predicate weight coefficient and then re-weights more to the biased predicates for better trading-off between the majority predicates and the minority ones. Extensive experiments conducted on the standard Visual Genome dataset and Open Image V4 \& V6 show the performances and generality of the SCR with the traditional SGG models.
translated by 谷歌翻译
In this paper we discuss the theory used in the design of an open source lightmorphic signatures analysis toolkit (LSAT). In addition to providing a core functionality, the software package enables specific optimizations with its modular and customizable design. To promote its usage and inspire future contributions, LSAT is publicly available. By using a self-supervised neural network and augmented machine learning algorithms, LSAT provides an easy-to-use interface with ample documentation. The experiments demonstrate that LSAT improves the otherwise tedious and error-prone tasks of translating lightmorphic associated data into usable spectrograms, enhanced with parameter tuning and performance analysis. With the provided mathematical functions, LSAT validates the nonlinearity encountered in the data conversion process while ensuring suitability of the forecasting algorithms.
translated by 谷歌翻译
Detecting abrupt changes in data distribution is one of the most significant tasks in streaming data analysis. Although many unsupervised Change-Point Detection (CPD) methods have been proposed recently to identify those changes, they still suffer from missing subtle changes, poor scalability, or/and sensitive to noise points. To meet these challenges, we are the first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem. Then we propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK). iCID identifies the change interval if there is a high dissimilarity score between two non-homogeneous temporal adjacent intervals. The data-dependent property and finite feature map of IDK enabled iCID to efficiently identify various types of change points in data streams with the tolerance of noise points. Moreover, the proposed online and offline versions of iCID have the ability to optimise key parameter settings. The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译